Molecular Modeling to Study Dendrimers for Biomedical Applications.
نویسندگان
چکیده
Molecular modeling techniques provide a powerful tool to study the properties of molecules and their interactions at the molecular level. The use of computational techniques to predict interaction patterns and molecular properties can inform the design of drug delivery systems and therapeutic agents. Dendrimers are hyperbranched macromolecular structures that comprise repetitive building blocks and have defined architecture and functionality. Their unique structural features can be exploited to design novel carriers for both therapeutic and diagnostic agents. Many studies have been performed to iteratively optimise the properties of dendrimers in solution as well as their interaction with drugs, nucleic acids, proteins and lipid membranes. Key features including dendrimer size and surface have been revealed that can be modified to increase their performance as drug carriers. Computational studies have supported experimental work by providing valuable insights about dendrimer structure and possible molecular interactions at the molecular level. The progress in computational simulation techniques and models provides a basis to improve our ability to better predict and understand the biological activities and interactions of dendrimers. This review will focus on the use of molecular modeling tools for the study and design of dendrimers, with particular emphasis on the efforts that have been made to improve the efficacy of this class of molecules in biomedical applications.
منابع مشابه
Modeling Dendrimers Charge Interaction in Solution: Relevance in Biosystems
Dendrimers are highly branched macromolecules obtained by stepwise controlled, reaction sequences. The ability to be designed for specific applications makes dendrimers unprecedented components to control the structural organization of matter during the bottom-up synthesis of functional nanostructures. For their applications in the field of biotechnology the determination of dendrimer structura...
متن کاملInternalization and toxicity of amine and hydroxyl terminated poly(amidoamine) dendrimers to photosynthetic microorganisms
Poly(amidoamine) (PAMAM) dendrimers are hyper-branched polymers with uniform size, defined molecular weight, large internal cavities and a high number of surface groups that make them particularly suitable for a number of biomedical and technological applications [1]. It has been found that surface functionalization is the main factor modulating the toxicity of dendrimers to mammalian cells lin...
متن کاملMolecular recognition of nucleic acids by nucleolipid/dendrimer surface complexes.
We show for the first time that 1,2-dilauroyl-sn-glycero-3-phosphatidyladenosine nucleolipid surface complexes with cationic poly(amidoamine) dendrimers can be used to selectively bind DNA including oligonucleotides. This molecular recognition has high potential for applications involving biomedical and bioanalytic devices as well as drug delivery systems based on nucleic acids.
متن کاملToxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human ...
متن کاملFunction Oriented Molecular Design: Dendrimers as Novel Antimicrobials.
In recent years innovative nanostructures are attracting increasing interest and, among them, dendrimers have shown several fields of application. Dendrimers can be designed and modified in plentiful ways giving rise to hundreds of different molecules with specific characteristics and functionalities. Biomedicine is probably the field where these molecules find extraordinary applicability, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 19 12 شماره
صفحات -
تاریخ انتشار 2014